当前位置:首页 > 网站优化 > 正文

互联网大数据驱动营销 大数据驱动的营销策略

什么是大数据营销

大数据营销是指通过互联网采集大量的行为数据,首先帮助广告主找出目标受众,以此对广告投放的内容、时间、形式等进行预判与调配,并最终完成广告投放的营销过程。

大数据营销,随着数字生活空间的普及,全球的信息总量正呈现爆炸式增长。基于这个趋势之上的,是大数据、云计算等新概念和新范式的广泛兴起,它们无疑正引领着新一轮的互联网风潮。大数据营销是指通过互联网采集大量的行为数据,首先帮助广告主找出目标受众,以此对广告投放的内容、时间、形式等进行预判与调配,并最终完成广告投放的营销过程。

首先,“大数据营销”是伴随互联网平台同步诞生的一种营销模式,在早期的互联网时代,很多平台都是刚刚兴起,本身没有什么名气,自然也没有流量,但是平台想要吸引用户消费,或者吸引商家入驻,甚至是吸引广告主投广告,活跃度都是一个硬性标准。

为了让平台保持高流量的活跃度,平台方就会花钱在各种渠道打广告,这种广告效应在早期会给平台带来可观的流量,但是随着平台的不断壮大,平台本身的偏好特点也会更加显著。

例如早期的网络平台比较偏重“综合服务”的特点,让用户在使用平台的时候能够感受到“应有尽有”的服务,但是伴随着越来越多的互联网公司创立新平台,个性化和专属性就会成为新时代互联网平台的竞争力,比如卖车的平台专注汽车交易,外卖平台专注餐饮跑腿服务,房产平台专注房屋租售服务,这就是新的互联网平台,专属标签更明显的标志。

但是在专属平台越来越成熟的同时,这个平台本身的专注度越高,它本身的用户群体就会因为受到局限而变少,这样的话,跟综合服务类的平台相比,新平台的活跃度就会很快到达瓶颈。

到了这个阶段,平台想要再次获得竞争力,就不能单单地依赖传统的“流量效益”,而是要更加侧重转化,也就是对平台上的商家和广告主来说,从以前的纯粹看重大数据,到看重营销的精准转化,这就是“大数据营销”的概念来源,我们也可以把它叫做“精准营销”。

大数据对网络营销的影响

大数据对网络营销的影响

在这股大数据时代背景下,消费者行为的变迁也越来越趋于不确定,移动互联网更是加速了这种不确定因素,那么,大数据对网络营销有何影响呢?

大数据对网络营销的影响 篇1

[摘要] 互联网时代的发展推动了数据和信息加速传播。大数据在这种大背景下应运而生,并逐步渗入到各行各业。而互联网企业通过大数据,促进信息的实效转化,为网络营销的精准决策和整个营销行业的发展提供了数据来源与支撑。文章主要通过阐述了大数据的定义、大数据的处理,进而总结大数据下网络营销管理优化措施及有效的网络营销策略,力求为各互联网企业的网络营销决策提供参考与借鉴。

[关键词] 大数据;网络营销;互联网

1前言

21世纪是一个信息大爆炸的时代,各种各样杂乱无章数据的出现,一方面给企业以及人们的日常生活造成了一定程度的困扰;另一方面人们也想从这繁杂的数据中找出规律,发现商机,从而抓住商机,开拓新的市场。大数据的出现恰恰能妥善地解决这一问题,大数据分析技术是通过对海量的数据信息进行系统的筛选与分析,力求寻求其中的规律,从而为企业的经营决策提供有力依据与支撑,使企业的经营决策变得更加准确且高效。现今,社会上人们之间的交流越来越密切,科技在高速发展,大数据就应运而生。阿里巴巴创办人马云曾经在演讲中提到,未来的时代将是DT的时代,DT即DataTechnology数据科技,对大数据的分析是阿里巴巴的重点工作之一。[1]互联网在改变人们生活方式的同时也在改变企业的运作模式,这是信息技术发展的必然。然而随着大数据的来临,网络营销也在不断地进行营销模式与管理模式的创新,试图寻求企业与消费者的利益最大化。现在越来越多的企业通过互联网平台抓取到的消费者的各种数据进行分析整理,获取消费者的消费趋向及特征,以此为依据来制定相应营销策略,不仅可以提高市场决策的准确性,还能大大缩短市场调查与决策分析的时间,提高了企业的经济效益,促进企业各个环节的高效运作。因此大数据与网络营销的结合将是必然的,它将为企业开创全新局面,带来前所未有的.机遇,同时也带来了挑战。

2大数据概述

麦肯锡全球研究对大数据的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合。[2]大数据技术在互联网时代的战略意义,不是在于掌握海量的数据信息,而在于对收集到的数据进行高度专业化处理,力求找出其中的规律与价值,为企业经营决策服务。[3]简而言之,大数据技术关键在于提高对数据的“加工处理能力”,通过“高加工”实现数据的“高增值”。它具有以下四大特征:分别为海量的数据规模、多样的数据类型、快速的数据流转和价值密度低,具体分析如下:

(1)海量的数据。从互联网或传统渠道收集到的海量数据,涉及面更广、种类繁多,只有运用大数据技术对数据进行分类,才能够满足企业的需求。

(2)多样的数据类型。大数据容纳的信息量大,信息种类也繁多,容量也比传统的数据仓库更大,通常有用户的查询信息、浏览信息、消费记录、消费周期等数据。

(3)快速的数据流转。大数据技术要求在短时间内对海量的数据进行高速处理,对庞大的数据进行分析、处理,从中找出有价值的数据资料,因此对数据的处理速度有很高的要求。(4)商业价值高,价值密度低。大数据需要从海量的数据当中提取出有价值的信息,对技术的要求很高,往往数据的价值密度低而商业价值高。

3大数据处理与网络营销

3.1大数据时代下的网络营销

网络营销是借助网络、通信和数字媒体技术实现营销目标的商务活动。其中可以利用多种手段,如微信营销、微博及博客营销、E-mail营销、视频营销等。大数据技术为网络营销带来了技术创新,也为企业带来了前所未有的机遇与挑战。网络营销的发展主要依赖于对消费者消费信息的了解,掌握了消费者消费信息相关的数据,就能够以此来制定合理化的营销策略,能够提前预测市场的发展方向,提高企业的生产效率,降低了企业的运营成本。同时也为企业开发新产品提供数据来源与支撑,有利于提高企业产品在市场的占有率。

3.2网络营销需要借力大数据

(1)科技的发展。互联网时代的到来,收集海量的数据信息显得更加简单可行,人们可以通过互联网平台收集到各种数据,还可以对数据进行反复的使用与共享,实现数据的循环利用,使数据创造出更多的价值。

(2)个性化需求的增加。社会的发展使人们的消费习惯与心理发生了显著的变化,不再希望自己所使用的产品与别人一样,希望自己是独特的,与众不同的,而企业恰恰能通过对消费者的消费偏好进行大数据分析,来为其制定个性化消费方案。

(3)用户数据易获取。互联网企业与传统的企业相比,其不同点之一就是数据的获取方式不同。传统企业能知道客户当时的需求和购买意向,但是无法获得更多与客户有关的信息与资料;而互联网企业通过用户的访问记录和消费行为

3.3商业定位的转变

大数据时代背景下,消费者对品牌的忠诚度不断下降,使得大数据时代商业模式必须从以品牌为中心向以消费者为中心转变。[3]阿里巴巴于2016年提出了以“消费者的生命周期”来做销售。充分体现了现在商业社会对品牌的转变逐步增加到了以消费者为中心的转变。在工业时代,我们无法获知消费者的翔实数据,但是在大数据时代下数据的原始积累和获取变得容易,借助于智能手机和穿戴设备等科技的发展,数据变得越来越翔实,因此让商家更容易全方位了解消费者,能够针对消费者做到千人千面。从而增加产品的依赖性和忠诚度。所以未来企业的竞争力逐步转变为:谁能提供专业化的产品和服务,谁能全面了解和分析信息,谁就会站在商业的浪潮上。

3.4商业理念

从以商品为主向服务转型大数据时代,消费者的知识水平越来越高,消费者会从已有的大量数据中全面了解商品的功能、价值等,如果仅仅是在商场或互联网简单的介绍商品品牌、包装及使用方法已经远远不能满足消费者的需求了。消费者依据大量的数据,对产品的了解程度甚至比营业员还要充分,因此企业不仅要非常精准地把商品构架、各种性能指标等解剖出来外,还必须向消费者提供大量的解决方案,即大数据时代企业卖出的不仅仅是简单的商品,而是方案的系统集成和商品的服务。所以转型势在必行,从以商品为主转向以服务为主,增加顾客对商品的忠诚度和依赖度,迎接新一轮的商业变革。

4结论

2016年是大数据的发展年,据保守估计,未来大数据的市场规模至少达到万亿元以上。在这股大数据时代背景下,消费者行为的变迁也越来越趋于不确定,移动互联网更是加速了这种不确定因素,电商和传统企业变得越来越离不开数据,数据即将成为未来企业的核心竞争力,企业要不断完善自己的企业治理结构,抓住市场潮流的变化,让不确定的消费者变得确定,这样才能有针对性地做到千人千面,提供个性化的商品和服务,在未来竞争格局中占据一席之地。

参考文献:

[1]AllisonCerra,KevinEasterwood,JerryPower.商业模式重构:大数据、移动化和全球化[M].北京:人民邮电出版社,2014:29-43.

[2]蔡承秉.掘金大数据数据驱动商业变革[M].北京:时代华文书局,2013:103-110.

[3]黄升民,刘珊.“大数据”背景下营销体系的解构与重构[J].现代传播: 中国传媒大学学报,2012 ( 11) : 13 - 20.

大数据对网络营销的影响 篇2

[摘要]

文章对当前有关大数据时代网络营销模式的相关概述进行了梳理和分析,进而对大数据时代网络营销模式的创新、精准性以及效果性研究作以归纳,最后进行了总结与展望。

[关键词]

大数据;网络营销模式;综述

1引言

大数据对时展产生了深远影响,网络营销模式如何充分发挥数据带来的机遇,从而促进其发展成为当前热门话题。数据具有的四大特点能为企业网络营销模式发展提供更加精准、个性化的信息,此外,大数据时代下的网络营销模式不仅重视创新性、精准性,也重视效果性。

2大数据与网络营销模式相关概述

2.1大数据的定义

20世纪80年代大数据被提出,到2008年才广泛传播。麦肯锡定义其为在一定时间内使用传统数据库软件无法对数据内容进行搜集、存储等的数据集合;《Science》将其定义为数据集规模无法在可容忍的时间内用目前的技术、方法等去获取、管理的数据;[3]维基百科将大数据定义为运用当前主流软件工具难以在合理时间内为企业经营决策提供完整分析过程的资源。比较有影响力的是Gartner的定义,其认为大数据通过新的处理模式能增强决策力、洞察力以及流程能力,并具备多样、快速增长性以及数据量大的信息资产。本文将大数据定义为以其主要特征为基础,通过运用科学的大数据处理技术能够增强其精准性、效果性等价值的信息资产。

2.2网络营销模式的定义

Rafi-AMohammed和RobertFisher等将网络营销定义为在线维护客户和公司在产品、服务等方面的关系;孙志宏认为网络营销是通过计算机网络、通信技术等为实现营销目标的市场营销方式;芦文娟、韩德昌认为其是以网络通信技术以及数字交互式为基础的营销活动;徐艳旻将网络营销定义为借助网络开展市场服务的营销活动。阎斌认为网络营销模式是企业通过有效运用互联网信息技术平台力求实现企业经营目标的营销活动。本文认为网络营销模式是借助网络、通信技术以及数字交互式媒体等进行的市场营销活动。

2.3网络营销模式主要类别

芦文娟、韩德昌认为网络营销模式主要有创建企业网站、参与网络社区、博客营销、网上广告投放;张在宏将其分为广告商、网上商店和服务、价值链服务提供商、网络渠道和虚拟社区;玄文启认为其可分为电子邮件、微博营销、病毒性营销、搜索引擎营销和博客营销;本文认为较有影响力的是周曙东等将其分为在线商店模式、中立交易平台模式、企业间网络营销模式、网上采购模式、网络拍卖模式、电子邮件营销模式、电子报关模式等的观点。

2.4大数据时代网络营销模式的特征

陈慧、王明宇认为大数据网络营销具有性价比高、时效性强、互动性强和个性化营销的特点。胡江涛研究认为关联性紧也是其主要的特点。

3大数据时代网络营销模式创新研究

张冠凤认为大数据时代网络营销模式主要包括商品关联挖掘营销、现代通信的大数据分析、大数据的用户行为分析营销和个性化推荐营销模式。张艳红认为大数据时代网络营销模式的革新还包括基于大数据的搜索引擎营销和DSP网络广告模式。高源、张桂刚认为其还包括基于大数据的商品地理营销模式。吴英鹰认为大数据背景下旅游企业网络营销新模式主要包括关联推荐和精准网络营销模式;王雯研究了大数据下电影整合营销和O2O营销模式。以上学者对大数据时代下网络营销模式创新研究较为全面,但总体上相关理论研究较少。

4大数据时代网络营销模式精准性研究

李晓龙、冯俊文提出了大数据环境下电商精准网络营销策略。牛艳红、王春国认为大数据时代网络营销模式精准性策略主要有搜索引擎、再锁定精准营销和博客营销。樊永梅发现了全数据精确制导、汽车销售整合信息对于汽车精确营销实现的重要性。倪宁、金韶认为其主要有精准定位目标消费群、精准挖掘消费需求、精准可控广告投放和精准评估广告效果。林燕提出了传播和广告精准营销策略。以上研究丰富了理论成果,但没系统分析大数据时代网络营销模式精准性营销的基本原理。

5大数据时代网络营销模式效果性研究

胡江涛发现了大数据时代网络营销实现从精准营销到效果营销的转变的关键问题,张艳红提出从政府层面、企业层面实现网络营销的效果性,目前学者对大数据时代网络营销模式效果性研究不多,还处在逐步认识的阶段。

6总结与展望

本文认为大数据时代下网络营销模式的研究还处在积极探索阶段,具体体现在缺乏成熟的网络营销模式划分标准;大数据时代下网络营销模式研究视角较单一和对其精准性和效果性缺乏深入研究,对于两者的交叉研究更是缺乏。本文认为未来研究可以结合大数据时代下网络营销模式的精准性和效果性进行综合研究;从多视角和结合具体的实际加强对其效果性研究;加强网络营销模式的系统性研究,实现大数据时代网络营销模式时效精准、效果统一。

;

大数据驱动决胜营销未来

大数据驱动决胜营销未来

大数据与网络营销珠联璧合,新型数字营销模式,区别于传统互联网营销以媒体为导向的形式,而是以挖掘用户的真实需求为导向进行广告投放。AdTime副总裁李麒在第七届广告主峰会上分享了其在大数据营销方面的经验。

网络广告仍然让企业头疼

2014年,网络广告市场已经突破1500亿元的大关——网络广告炙手可热,广告形式百家齐放,这却带来了企业的选择难题。这些难题主要体现在以下方面:

媒体碎片化

首先,现在是一个媒介碎片化的时代——截至2013年中国网站450万,网页上千亿,庞大的互联网环境下超过6.31亿的受众分散在450万家网络媒体上,高成本投入往往会形成了广告浪费;低投入又恐杯水车薪无法有效覆盖。最终使得大部分中小企业面对互联网营销进退两难。

网民兴趣、行为时间、区域、媒体属性难以把控

其次,如果无法掌握网民兴趣、行为时间、区域、媒体属性等因素,互联网广告就很难做到精准投放。其中在以上因素里,受众区域化这一点,对于受众精确的细分和勾勒,以及广告投放具有非常重要的意义。

广告环境恶化

第三,广告环境恶化——网民常被无关广告信息干扰加剧,而通过我们精确的大数据分析,能做到让合适的广告在合适的时间通过合适的渠道推送给最需要他的人,准确的智能化的广告推送在不影响用户体验的基础上又能提升网民对品牌和产品的好感度。

回报问题

如今日益成熟的抽样调查面临艰难的选择,原有的抽样设计难免误差失控,扩大样本数量无疑可以控制误差,导致费用的不断增加。

在大数据时代下,我们可以通过广告调度来不断优化广告投放产出比,这在AdTime分为同站调度和跨站调度。同站调度的意义是可以在投放产品广告时,进行针对性圈定;而当受众进入网站内容页,此时用户匹配度最高,用户停留时间最长,然后再投放活动广告,对人群进行有效牵引。这是同站调度的概念。

对于跨站调度,比如品牌在网站首页举行互动活动时,用户没有注册参加而转跳到其它网站时,我们可以更换产品诉求,进行追踪投放;而当用户进行注册之后,转跳到其它网站时,我们对受众进行新品推送,提升ROI。让每一次投放在最大程度上收获到最多的转化率。

大数据让网络广告活起来

面对这些难题,我们更需要的是一种更灵活的形式。

用户行为成就——智能管道

互联网有传统媒体所没有的优势。每个人在网上都会留下痕迹,系统通过收集分析用户的互联网足迹,浏览的网页内容,就能找到用户的兴趣关注点,对用户进行细分管理。当用户再上网时,就可以根据用户的喜好,系统自动推送匹配的、相关度高的广告了。

电子商务的崛起让网络广告走向效果时代

随着电子商务产业的崛起,AdTime有了更多展示的机会。电商客户对广告效果的要求很直接,谁能够提高点击率,谁能够带来更大的ROI;而门户网站如今也开始重视人群的细分和定向,也逐渐放弃按天售卖广告位的销售模式,更多的尝试针对不同目标人群的需要,去推送更相关的广告内容,这就给了我们更多的机会,可以帮助门户网站对广告位进行优化。

大数据正改变营销模式

以今天最受关注的O2O为例,但O2O必须形成一个完美的闭环才能拥有足够大的未来预期,线上与线下的打通其实最难的一步便是用户层面的数据统一。这里面存在四个环节:1、如何通过大数据判定,向网站导入精准有价值的流量;2、再如何将价值用户引导至线下商户,并完成消费;3、线下商户又如何把消费数据记录并提交至线上进行分析,沉淀出有效数据对用户特征进行判定。4、从线上对不同特征的用户群体进行针对性个性化的服务,最终再次引入线下商户进行消费。

这是一个复杂的闭环,其中对数据的提炼和处理是最为重要的一个环节。大数据的出现将会是一个全新的局面,地面的数据也将归并到大数据的研究范畴,同时与互联网的数据进行统一打通,这将快速的建立起全新的营销格局。

对于互联网而言,未来的数字营销都将是基于大数据,所有的营销行为都将是以价值最大化为前提。在全媒体的覆盖下,广告将实现最佳效果转化。AdTime将进一步利用自身技术的先进性、分析视角的独特性以及信息数据的全面性,确保自身全营销数字平台的持续领先。

以上是小编为大家分享的关于大数据驱动决胜营销未来的相关内容,更多信息可以关注环球青藤分享更多干货

大数据赋能:如何利用大数据驱动,精细化运营

互联网时代,很明显的一个特征就是大多数信息都是以数据的形式进行记录,大数据的产生,简化了人们对世界的认知。通过将人的行为转化成无数个可以量化的数据节点,从而为人提供了一个“数据画像”。

大数据等技术的出现,给平台提供多样化的营销渠道,比如千人千面的商品推荐,C2M式的需求定制等。类似这样的大数据应用,既能提高用户体验又能提升平台效率。

1、大数据时代,数据如何驱动运营 

在大数据的驱动下,呈现给用户的内容都是经过算法精密筛选的。

当你打开资讯类APP时,算法根据你的历史浏览类别算出你的阅读偏好,据此向你推荐内容;当你打开短视频APP时,你刷到的视频都是你感兴趣并且关注的标签内容;当你使用打车软件时,算法给你推荐你可能会选择的出租车和价格……

经过算法推荐,用户阅读到的都是自己感兴趣或与自己生活圈子相关的信息内容,不感兴趣或者观点相左的内容会被算法过滤。

2、大数据识别有价值信息,辅助决策 

对于大数据来说,它不仅面临着如何识别一些重要的信息,而且还要将这些用于决策。

目前业内对于大数据的分析更多地注重在数据识别、储存、定性描述相关分析等领域。

大数据分析的优点不在于“大”,而在于“准”,尤其在这个信息量大的时代,采用哪些数据进行分析,从而得出更准确的结论则更重要。

3、大数据连接、赋能、跨行业数字化 

通过数据对不同行业赋能,帮助不同行业进行数据价值挖掘。传统行业和数据行业结合的点在于将线上和线下的资源打通。例如新零售在大数据的赋能下,将广告和营销做结合,能够清晰的看到你的用户长成什么样。

4、如何解读数据成了非常重要的技能 

互联网时代,人人都在说大数据、数据分析、数据运营。数据是为你的工作提供反馈和指导的工具,数据会告诉你问题出在哪里;你想达到一个运营推广目标,数据会告诉你途径和方法。

5、企业如何利用大数据分析精准运营 

无疑,大数据时代,数据资产已成为企业的核心竞争力。但数据在手,不会运用它,就会变得没有价值。在当下企业数字化浪潮中,数据是企业转型的基础元素,如何将企业不同业务、类型的数据应用起来,推动企业运营,增加收入、降低成本、提高效率,控制风险等,是很多企业面临的难点。

数据对运营的重要性已不言而喻,互联网平台更是以数据驱动运营。产品研发从立项开始已经受到数据的驱动,而运营过程中的产品设计优化、市场渠道推广、用户需求、用户行为和用户价值等运营活动更离不开数据。

那么,数据从何而来呢?

构建数据需求: 构建平台关心的数据需求,围绕着用户的需求展开,通过数据卖点制定重要事件的采集。可以从数据上,明确看到你的用户增加、流失、渠道来源,从而帮助你做更好的数据管理,提升投放效率。

数据报表呈现: 数据采集完之后通过动态计算,形成报表,了解你关心数据的升降,你的运营、产品是否有效提升,都能在报表数据得到体现。

在精细化运营的大背景下,学会用数据分析来弄清用户从哪来、对什么感兴趣、为什么流失尤为重要。

01、用户分群,寻找更多的核心用户

用户分群本质来上来说,就是将用户分割成很多的群体,详细的看每个群体用户特征。最经典的用户模型是R(最近购买时间)F(频次)M(消费金额),三个维度画出九宫格立体的象限,了解你最高价值客户的分布和特征,辅助你进行决策。同时,通过高活跃核心用户的运营,能够帮助你理解你的客户。

02、营销转化漏斗分析

互联网营销就像个漏斗,线上曝光后,客户在浏览所发布的内容时,被层层过滤和筛选,没有需求的、与目标客群不符的都会离开,直到意向客户的预约。

03、客户浏览来源分析

互联网营销要在线上的各个渠道曝光,建立线上营销矩阵,官网、APP、公众号、小程序、朋友圈等等,哪个渠道的推广效果好,客户浏览多,对后期的投放具有非常重要的指导意义,更好的发挥自身的优势,同时弥补短板。

互联网运营是个循序渐进的过程,大数据分析可以帮助你加快和不断完善这个过程。我们来看看中移互联网大数据如何通过大数据技术分析,真正从数据“触摸”获得实际价值。

中移互联网大数据平台-利用数据驱动运营

中移互联网大数据产品有数通过专业的SDK数据采集,经过大数据平台服务分析,提供专业的运营数据分析、用户画像分析、渠道分析、以及自定义事件分析等,实现数据化管理与运营。

帮助企业洞察用户画像和行为,根据用户画像结合实时用户数据,精准定位目标用户,实时了解用户行为变化,从中发现用户需求的改变,及时调整运营策略,降低业务推广成本,实现效益最大化。

帮助企业随时掌握各项数据,包括应用分析和网页分析(含H5),提供全面准确的运营分析、用户分析、渠道分析等系列服务,并输出相应的数据报表。完美的解决了企业无法获取应用或网页运营分析数据、无法分析渠道投放效果、无法统计应用收入情况等疑难问题。